Kondyurina I, Wise S, Ngo A, Filipe E, Kondyurin A, Weiss A, Bao S, Bilek M

Biomed Mater 2017 Apr;

PMID: 28435148


Polyurethanes are a diverse class of polymers, with independently tunable mechanical and biodegradation properties making them a versatile platform material for biomedical implants. Previous iterations have failed to adequately embody appropriate mechanical and biological properties, particularly for vascular medicine where strength, compliance and multifaceted biocompatibility are required. We have synthesized a new polyurethane formulation with finely tuned mechanical properties, combining high strength and extensibility with a low Young’s modulus. Additional cross-linking during synthesis enhanced stability and limits the leaching. Under cyclic testing, hysteresis was minimal following completion of the initial cycles, indicating the robustness of the material. Building on this platform, we used plasma immersion ion implantation (PIII) to activate the polymer surface and functionalized it with recombinant human tropoelastin. With tropoelastin covalently bound to the surface, human coronary endothelial cells showed improved attachment and proliferation. In the presence of heparinized whole blood, tropoelastin-coated polyurethane showed very low thrombogenicity in both static and flow conditions. Using this formulation, we synthesized robust, elastic prototype conduits which easily retained multiple sutures and were successfully implanted in a pilot rat aortic interposition model. We have thus created an elastic, strong biomaterial platform, functionalized with an important regulator of vascular biology, with the potential for further evaluation as a new synthetic graft material.